
SIAM J. SCI. COMPUT. c\bigcirc 2018 Society for Industrial and Applied Mathematics
Vol. 40, No. 1, pp. C131--C155

COMPUTING THE DISTANCE BETWEEN TWO FINITE ELEMENT
SOLUTIONS DEFINED ON DIFFERENT 3D MESHES ON A GPU\ast

MAXENCE REBEROL\dagger AND BRUNO L\'EVY\dagger

Abstract. This article introduces a new method to efficiently compute the distance (i.e., Lp

norm of the difference) between two functions supported by two different meshes of the same 3D
domain. The functions that we consider are typically finite element solutions discretized in different
function spaces supported by meshes that are potentially completely unrelated. Our method com-
putes an approximation of the distance by resampling both fields over a set of parallel 2D regular
grids. By leveraging the parallel horse power of computer graphics hardware (graphics processing
unit (GPU)), our method can efficiently compute distances between meshes with multimillion el-
ements in seconds. We demonstrate our method applied to different problems (distance between
known functions, Poisson solutions, and linear elasticity solutions) using different function spaces
(Lagrange polynomials from order one to seven) and different meshes (tetrahedral and hexahedral,
with linear or quadratic geometry).

Key words. distance, field distance, finite element, error estimate, mesh comparison, approxi-
mation error, error analysis

AMS subject classifications. 65D05, 65D30, 65N30, 68U20

DOI. 10.1137/17M1115976

1. Introduction. Mesh-based numerical methods approximate solutions of par-
tial differential equations by combining simpler functions defined on a mesh. A natural
question that arises is how to quantify the approximation error due to the numerical
method, and how to compare different results obtained with different function spaces.
Except for trivial problems, there is no analytical solution and one has to rely on
error estimates. Our approach focuses on comparing solutions obtained with differ-
ent methods. Comparing different solutions requires measuring the distance between
functions that are not always defined in the same function space. The main difficulty
is that the different function spaces may be supported by meshes that are potentially
completely different/unrelated. We propose a practical tool to quickly measure the
distance between two solutions in such a situation. We think that such a tool was
missing in the ``numerical toolbox."" Our method has the potential to help answer dif-
ferent questions, such as estimating the impact of the mesh on the solution, estimating
the influence of the finite element space, comparing different codes, and estimating
how to optimize the mesh size in order to reach a given accuracy.

Thus, our method computes an approximation of the distance between two fields,
scalar or vector, which are piecewise-defined on 3D unstructured meshes. The cells of
the two meshes can be arbitrary and completely different. In the results reported in
this article, we used linear, quadratic and cubic tetrahedra and trilinear, quadratic,
and cubic hexahedra. Our method can compute both the quadratic norm (L2) and
the maximum difference norm (L\infty). To compute the distance between the two func-

\ast Submitted to the journal's Software and High-Performance Computing section February 13, 2017;
accepted for publication (in revised form) December 14, 2017; published electronically February 20,
2018.

http://www.siam.org/journals/sisc/40-1/M111597.html
Funding: This work was funded by ERC SHAPEFORGE (StG-2012-307877) and r\'egion Lor-

raine (France).
\dagger Inria Nancy and LORIA, Villes-l\`es-Nancy, 54600, France (maxence.reberol@inria.fr, bruno.levy@

inria.fr, https://members.loria.fr/BLevy/).

C131

http://www.siam.org/journals/sisc/40-1/M111597.html
mailto:maxence.reberol@inria.fr
mailto:bruno.levy@inria.fr
mailto:bruno.levy@inria.fr
https://members.loria.fr/BLevy/

C132 MAXENCE REBEROL AND BRUNO L\'EVY

tions, we resample them on a 3D regular grid that we compute slice by slice. As
discussed in section 2 below on related work, there are alternative approaches based
on mesh intersections that create a function space rich enough to exactly represent
the two functions to be compared. However, such approaches are slower and are
not simply applicable to meshes that contain curved elements (e.g., trilinear hexa-
hedra and quadratic tetrahedra). For this reason, we adopted a brute-force strategy
(graphics processing unit (GPU) based) to sample both functions. It is fast and
deals efficiently with large meshes: in the results section, we compute (Figure 10) the
Lp-distances between a piecewise-linear solution defined on 2.9M tetrahedra and a
piecewise-quadratic solution defined on 2.3M tetrahedra within two seconds.

2. Related work. We first discuss standard finite element approaches in which
the field difference is represented on a common functional space, where the distance
can be computed by quadratures (section 2.1). In the present work, the approach is
very different and is closer to techniques that are used in high-order finite element
visualization (section 2.2).

2.1. Distance via quadratures. A possible approach to computing the dis-
tance between two fields is to project both functions onto the same function space
that will be used to compute the distance. There are basically two possibilities: (i)
project one field onto the other mesh, together with its associated functional space,
or (ii) project both fields on a third mesh/function space, designed to accurately rep-
resent both input functions. In both cases, there is data transfer, or projection, from
one mesh onto another.

The meshes we are interested in are unstructured, potentially completely unre-
lated/nonnested. In previous works, data transfer between such meshes has been
developed as it appears in various frameworks such as Galerkin projections (i.e., in-
terpolation in a weak sense) in the context of mixed finite elements [10], solution
transfers after adaptive remeshing in time-dependant problems [4, 6], and multigrid
solvers using nonnested meshes [18, 9].

In our general setting, projecting one field onto the other approximation space is
not always applicable since the target space may not be suitable to represent the initial
field with sufficient fidelity. Both meshes may have very different element sizes and
shapes, polynomial orders, or even discontinuity in the function spaces. In previous
works, this concern was addressed by producing an auxiliary mesh composed of ele-
ment intersections of both input meshes, as illustrated in 2D in Figure 1. Accurately
and efficiently computing intersections between 3D meshes is difficult and has been
studied mainly for tetrahedral meshes, with different names: rendezvous mesh [20, 23],
common-refinement mesh [12], supermesh [8, 15], and mesh intersection [4]. To keep
memory requirements reasonable and to allow parallelizing the method, these intersec-
tion meshes are not built explicitly but locally. The advantage of this approach is that
it defines a superspace [7] that includes both input approximation spaces. Then the
field difference f - g can be exactly represented and used to compute the Lp-distance
with adapted quadratures. They are used to compute conservative interpolations that
preserve some field properties (e.g., mass or energy) during the projections. However,
such methods are extremely difficult to implement for curved elements (\BbbP 2, \BbbP 3). The
problem also appears when using trilinear hexahedra that have nonplanar faces. The
approach that we propose easily handles curved elements (but this comes at the price
of a less elegant ``brute force"" approach).

COMPUTING THE DISTANCE BETWEEN FEM SOLUTIONS C133

Fig. 1. Two different meshes \scrA and \scrB of the same domain. \scrS is the supermesh of both \scrA and
\scrB . In 3D and with curved elements, computing such an \scrS supermesh is very difficult; therefore, we
replace it with slicing and sampling.

2.2. Finite element visualization techniques. Our approach samples both
fields on a regular 3D grid that is sliced, i.e., decomposed into a large number of
parallel 2D grids. In a certain sense, evaluating the fields at regular samples of a
2D grid is very similar to rendering a finite element solution onto the screen (that is
also considered as a 2D grid of pixels). For this reason, we discuss in this subsection
several techniques to display finite element solutions that share some similarities with
our approach. Interestingly, graphic hardware (GPU) and the associated standard
rendering techniques can very efficiently process huge numbers of triangles and com-
pute linear interpolations inside them. Note that in our context we are also interested
in higher-order interpolations and possibly curved elements (more on this later).

Historically, GPUs were only optimized for linear interpolations. For this reason,
a first approach to render the fields, or equivalently to evaluate them, is to find optimal
refinements of the elements to build an accurate piecewise-linear approximation (i.e.,
tetrahedra) of the fields [13, 21] and then to use the marching tetrahedra algorithm
[3, 24] to evaluate the fields at pixel centers. This approach requires error estimates
and leads to huge refined meshes, which are not practical, especially if the input
meshes are already large.

Still using early hardware, to simulate higher-order interpolation, an alternative
[11] combines precomputed images (textures) defined for each function of the polyno-
mial basis. However, this requires significant preprocessing for all the basis functions
and it is not well adapted to the case of a 3D mesh cut by a 2D plane.

With the introduction of programmable shaders in the standard OpenGL/DirectX
rendering pipelines, it is more efficient to directly evaluate the finite element shape
functions on the slicing plane at each pixel [5, 17]. The element containing the pixel
is found via raycasting, and the reference coordinates, required to evaluate the shape
functions, are obtained via mapping inversion with the Newton--Raphson iterative
method. Such an approach is expensive when considering dozens of millions of sam-
ples, especially for nonaffine mappings. To avoid mapping inversions for curved cells,
it has been proposed to approximate the shape functions along the rays in world space
with L2-projections [16] on 1D polynomials. An alternative is proposed in [25].

In our context, since we sample the fields slice by slice (each slice independently),
we just need to compute the intersection between the mesh and a plane parallel to the
bounding box. Therefore we do not need the flexibility of the raycasting approach. We
use instead the marching tetrahedra algorithm [3, 24] and the OpenGL rasterization
to interpolate the reference coordinates at pixel centers. This has the advantage of
making the algorithm simpler. More importantly, this makes use of the rasterization
hardware, which is extremely efficient at determining the list of pixels contained in
each triangle.

C134 MAXENCE REBEROL AND BRUNO L\'EVY

3. Our method: \bfitL \bfitp -distance approximation via slicing and sampling.

3.1. Overview. Our approach evaluates both input fields on a 3D regular grid
of points. Following the standard definition of finite elements, we assume that field
values are defined by an interpolation\circ inverse mapping composite function with the
form f| K(x) = \^fK \circ M - 1

K (x), where fK is the field interpolation function defined in a
reference space and where MK denotes the forward mapping of the element K from
the reference space to the world space.1

We avoid inverting the mappings by directly interpolating the reference coor-
dinates (\^x = M - 1

K (x)) in world space. Our implementation supports polynomial
element mappings (e.g., trilinear hexahedra and quadratic tetrahedra) and various
element shape functions. For nonaffine mappings, we decompose each element into
a set of small tetrahedra to approximate the geometry. This subdivision is executed
directly on the GPU. This does not affect the performance too much since there is no
additional required memory transfer (element subdivision is completely done on the
GPU).

Sampling the fields directly over the 3D regular grid is not reasonable as it would
consume too much memory. Thus we decompose distance computation (section 3.2)
into layers (section 3.3), or slices, corresponding to parallel planes of the 3D regular
grid. On each layer, both fields are evaluated at grid samples (section 3.4, Figure 2).
Using this slicing algorithm, only one slice at a time needs to be stored. The OpenGL
framework allows efficient processing of the layers by exploiting GPU hardware (Ap-
pendix A).

The distance approximation computed by our method converges to the distance
computed with quadratures on an analytical problem (section 4.1) and converges at
different rates with the number of samples, and with the subdivision level for curved
elements, depending on the mesh and field properties (section 4.2). Performance is
measured on test cases of various sizes and shows that good accuracy is obtained in
less than one second for standard problems (section 4.3). Fast distance computation
allows us to study the convergence of Lagrange finite elements on a realistic problem in
a few minutes (section 4.4). Alternatively, the grid sampling approach can be used to
generate useful visualizations and allows us to develop interactive tools to investigate
localized features in the fields (section 4.5). The computation converges in reasonable
time (one minute) even with high-order polynomials (orders 5 and 7) on multimillion
element meshes (Appendix B). However, there are limitations associated to regular
sampling and to the usage of GPU hardware (section 4.6).

The open-source program associated with this work is included in the supplemen-
tary material.

3.2. Problem setting. The input of our method is a pair of functions f and g
(or fields), defined as finite element solutions, supported by two different meshes \scrA
and \scrB of the same domain \Omega .

The goal of our method is to compute an approximation of the Lp-distance be-
tween the fields f and g, given by

\| f - g\| Lp =

\biggl(\int
\scrA \cap \scrB

(f(x) - g(x))pdx

\biggr) 1
p

if p < \infty

= max
x\in \scrA \cap \scrB

(f(x) - g(x)) if p = \infty .

1Thus it is inverted when evaluating \^fK that takes its argument in the reference space.

COMPUTING THE DISTANCE BETWEEN FEM SOLUTIONS C135

We approximate this norm by sampling it on a 3D regular grid of points:

dLp,h(f, g) =

\biggl(\sum
i=1,...,N

h3(f(xi) - g(xi))
p

\biggr) 1/p

,

where h is the space between two adjacent samples and N the number of samples
inside the volumes of both \scrA and \scrB . The samples (xi)i=1,...,N can also be seen as the
voxel centers of a voxel grid.

Clearly, for bounded piecewise continuous functions, we have

dLp,h(f, g) - - - \rightarrow
h\rightarrow 0

\| f - g\| Lp .

Fields which are piecewise-defined on meshes, such as finite element solutions, are
usually relatively smooth. Therefore convergence should be reached within a reason-
able number of samples in practice. We verified this assumption by measuring the
impact of the distance between two samples h (voxel size) on the distance computation
(see experimental data in section 4.2). In the end, we virtually built a voxelization
of the field difference f - g. We can also interpret it as a piecewise-constant approx-
imation of the field difference on a regular cubic mesh. Since there is a very large
number of tiny voxels (potentially billions of them), this approximation is sufficiently
accurate in practice.

3.3. Slicing. We decompose the 3D voxel grid into a list of 2D pixel grids that
we call slices and sample both input functions f and g on these slices. The distance
computation can be rewritten as

dLp,h(f, g)
p = h3

\sum
k=1,...,ns

\sum
i=1,...,Nk

(f(xi) - g(xi))
p,

where ns is the number of slices and (xi)i=1,...,Nk
are the samples of the slice k which

are inside both \scrA and \scrB .
Clearly, the inner sums can be computed independently: after a slice is processed,

the only value that we need to store is its contribution to the global sum. As a
consequence, only one slice at a time needs to be stored. This makes it possible to
compute distances using a 3D grid with billions samples while using a limited amount
of memory (a 2D grid with millions samples).

For a given slice k, we can compute independently the values of f and g at all the
pixel centers of the slice. That is, we first compute the lists (fi = f(xi))i=1,...,Nk

, (gi =
g(xi))i=1,...,Nk

independently, and then we compute the sum of the differences. We
call this process field sampling (illustrated in Figure 2).

The global algorithm of our approach is Algorithm 1.

3.4. Sampling the field on a 2D pixel grid. The input is a field f defined
on a mesh \scrA and a regular grid of sampling points (xij)ij . The field values are
piecewise-defined inside the elements K by a composite function with the form

(1) f| K(x) = \^fK \circ M - 1
K (x),

where MK denotes the element mapping such that K = MK(\^K), and where \^K is the
reference element (e.g., the unit cube or the reference tetrahedron). We denote by

\^x = M - 1
K (x) the reference coordinates. The function \^fK is the interpolation defined

C136 MAXENCE REBEROL AND BRUNO L\'EVY

Fig. 2. Left: Scalar field on a tetrahedral mesh. Center: Slicing plane. Right: Field values at
pixel centers.

Algorithm 1. Distance computation.

compute the voxel grid dimensions nx, ny, ns from h
for each slice k in [1, ns] do

compute the field samples (fi)i=1,...,Nk
 \triangleleft subsection 3.4

compute the field samples (gi)i=1,...,Nk
 \triangleleft subsection 3.4

compute the difference cpk =
\sum

i=1,...,Nk
(f(xi) - g(xi))

p

end for
compute the global distance dph(f, g) = (h3

\sum
k=1,...,ns

cpk)
1/p

by the coefficients, associated to the cell K, of a function basis defined on the reference
cell \^K. The sampling points (xij)ij form a rectangular grid of equally spaced points.
We denote by P (x) = 0 the equation of the associated plane P.

The output is the list of values (fij)ij which are the values of f at the sampling
points (xij). For the samples which are not inside the mesh \scrA , we simply store a no
data value.

When \scrA is a tetrahedral mesh, we sample the field with Algorithm 2.

Algorithm 2. Field sampling on tetrahedral meshes.

for each tetrahedron K such that K \cap P \not = \emptyset do
compute \^x at K \cap P vertices \triangleleft marching tetrahedra
for each sample xij inside K \cap P do

interpolate linearly \^x to get \^xij at xij \triangleleft triangle rasterization

compute fij =
\sum

k fk
\^\phi k(\^xij) \triangleleft field evaluation

end for
end for

We will explain later in section 3.5 how to extend Algorithm 2 to deal with meshes
composed of curved elements.

Marching tetrahedra algorithm. For each tetrahedra, we have to compute the
intersection with the slicing plane. A simple and efficient algorithm is the standard
marching tetrahedra [3].

Consider the tetrahedron of vertices a1,a2,a3,a4 and a plane of equation P (x) =
0. By looking at the signs of P (a1), P (a2), P (a3), P (a4), we determine the intersection
configuration, which is either empty, a triangle, or a square (i.e., two triangles). If it
is one or two triangles, we compute the positions and the reference coordinates of the

COMPUTING THE DISTANCE BETWEEN FEM SOLUTIONS C137

a) b)

Fig. 3. (a) Marching tetrahedra: Intersection between the slicing plane P and a tetrahedron.
(b) Triangle rasterization and interpolation of reference coordinates \^x at pixel centers (symbolized
by the pixel colors).

vertices at intersected edges. For example, in Figure 3(a), we have

e12 = (1 - \alpha)a1 + \alpha a2,

\^e12 = (1 - \alpha)\^a1 + \alpha \^a2

with \alpha = P (\bfa 1)
P (\bfa 1) - P (\bfa 2)

, \^a1 = (0, 0, 0), \^a2 = (0, 1, 0).

Optimization: Restriction to a set of candidates. In a basic implementation, the
marching tetrahedra algorithm is called for all tetrahedra of the mesh (at a given
slicing plane). This can be highly inefficient for large meshes as most of the elements
are not intersected by the plane. We propose a simple optimization that consists in
sorting the elements and maintaining a list of cell candidates.

For further implementation on the GPU, we want a range [first, last] of consecu-
tive element candidates. A possibility is to sort the tetrahedra by their position along
the axis perpendicular to the slicing plane. For example, if we slice the mesh with
planes perpendicular to the z-axis, we sort tetrahedra by their minimum z-coordinate.
Then as the slicing plane altitude increases, the range [first, last] is updated such
that

\bullet first is the tetrahedron below the slicing plane with the highest z-coordinate;
\bullet last is the tetrahedron with the highest minimum z-coordinates, whose lowest
vertex is below the slicing plane.

This range still contains some tetrahedra which are not intersected by the slicing
plane, but we have found this simple optimization is sufficient for standard meshes
and results in a significant speed-up in our GPU implementation, as it avoids a lot of
memory access and synchronization inefficiencies.

Triangle rasterization. The input of the rasterization is an intersection triangle
produced by the marching tetrahedra step. The rasterization consists in determining
the sampling points which are inside the input triangle and interpolating the reference
coordinates at these points. This process is illustrated in Figure 3(b).

In our implementation discussed in section A, this step is executed automatically
by the OpenGL pipeline.

Field evaluation at sample. At each sample xij inside the rasterized triangle,
we evaluate the field value fij with the finite element formula:

fij =
\sum

k=1,...,NK

fk \^\phi k(\^xij).

C138 MAXENCE REBEROL AND BRUNO L\'EVY

For Lagrange finite elements, the fk's are the coefficients associated to the NK degrees
of freedom of the element K, (\^\phi k)k=1,...,NK

is the Lagrange function basis associated

to the reference element \^K, and the reference coordinates \^xij have been computed by
the previous triangle rasterization step.

This evaluation step can be generalized to more complex cases where one can
compute fij from the reference coordinates and some coefficients:

fij = fK(\^xij).

This allows us to implement the field interpolation for vector basis functions such as
the Nedelec or Raviart--Thomas finite elements.

3.5. Extension to curved elements. We now extend the algorithm to curved
elements, i.e., elements in which geometry is not defined by an affine mapping but by
a polynomial one, such as \BbbP 2,\BbbP 3 elements and (trilinear) hexahedra. Before detailing
the method, we motivate the particular approach that we are using: in the field
evaluation equation (1), finding the element that contains a sample point and inversing
the mapping (for each sample) are computationally expensive. When considering
millions of samples and nonaffine mappings, this becomes a prohibitive cost. In our
approach, we never have to locate elements or inverse the mappings; the backward
mechanism is replaced by a purely forward one, in the same spirit of the finite element
assembly, where one processes the cells independently and uses a change of variable to
avoid inverse mapping computations. More importantly, all the steps of Algorithms 2
and 3 can be efficiently implemented in a GPU pipeline which has dedicated hardware
for triangle rasterization and linear interpolation.

The algorithm in the previous subsection computes exactly the reference coordi-
nates at the sampling points as the tetrahedra mappings are affine functions. This
argument holds for any element defined by an affine mapping, but in practice this only
concerns tetrahedra or cubes in regular meshes. In this subsection, we are interested
in extending our approach to meshes in which elements have nonplanar faces such as
hexahedra, pyramids, quadratic tetrahedra, etc.

Consider a curved element K defined by the polynomial mapping MK of a ref-
erence element \^K. To compute the field values, we need the reference coordinates at
pixel centers, but this time it is no longer possible to get them by linear interpolation
as the mappings are not affine. The exact approach would be to draw a piecewise
linear bounding box of the element, then for each pixel of the rasterization of this
bounding box, to inverse the mapping (with a Newton-type iterative method), and
then to check whether the preimage of the sample is inside the reference element.
This approach is computationally expensive and not straightforward to implement,
so instead we propose introducing a piecewise-linear approximation of the geometry.

The reference element \^K is decomposed into many subtetrahedra which are
mapped using the mapping MK , as illustrated in Figure 4. The field sampling algo-
rithm becomes Algorithm 3.

This algorithm is almost the same with the exception that there is a new outer
loop. The reference coordinates are computed at subtetrahedra T vertices, then the
marching tetrahedra step is executed on the subtetrahedra T , and eventually the
reference coordinates of the parent cell K are obtained at samples. This way we
produce a piecewise-linear approximation of the reference coordinates in the curved
elements. Formally, the new field evaluation formula is

fij =
\sum

k=1,...,NK

fk \^\phi k(\~M
 - 1
K (xij)),

COMPUTING THE DISTANCE BETWEEN FEM SOLUTIONS C139

Fig. 4. Piecewise-linear approximation of mappings (decomposition in subtetrahedra). (a)
Quadratic tetrahedron mapping with two subdivision levels. (b) Trilinear hexahedron mapping with
two subdivision levels.

Algorithm 3. Field sampling on curved meshes.

for each cell K do
decompose K into subtetrahedra T 's \triangleleft element decompositions
for each subtetrahedron T such that T \cap P \not = \emptyset do

compute \^x at T \cap P vertices \triangleleft marching tetrahedra
for each sample xij inside T \cap P do

interpolate linearly \^x to get \^xij at xij \triangleleft triangle rasterization

compute fij =
\sum

k fk
\^\phi k(\^xij) \triangleleft field evaluation

end for
end for

end for

where \~MK is the piecewise-linear approximation of the mapping MK .

Element decompositions. In our implementation, we use recursive subdivision
levels sl. At each level, a basic subdivision is applied to all the current subelements.

For hexahedra, our basic subdivision consists in decomposing a cube into eight
cubes. After all the subdivision levels have been applied, the subcubes are each
decomposed into six tetrahedra. A level two subdivision (i.e., a hex into 384 sub-
tetrahedra) is shown in Figure 4. In the end, hexahedra are decomposed into 8sl \times 6
subtetrahedra. When using our decomposition of a hexahedron, there is a diagonal
direction that appears on faces. Two adjacent hexahedra can be decomposed with
two opposite diagonal directions. In this case, the partition of the space is not perfect
and there may be small holes or overlaps at hexahedra interfaces. In practice, we
observed that with a sufficiently large number of subtetrahedra, the introduced error
is negligible. Note that it would be possible to completely avoid it by implementing
compatible tesselations (at the price of combinatorial prepreprocessing).

For curved tetrahedra, our basic subdivision consists in applying the 4-tetrahedra-
1-octahedron decomposition and then decomposing the octahedron into four tetrahe-
dra. So at each subdivision level, each tetrahedron becomes eight subtetrahedra. In
the end, each curved tetrahedron is decomposed into 8sl subtetrahedra. A level two
subdivision of a quadratic tetrahedron (i.e., 64 subtetrahedra) is shown in Figure 4.

The geometry approximation of curved cells introduces an error on the distance
computation which decreases with the refinement level. The appropriate level of
subdivision depends on the application: a level one subdivision may be sufficient
for a rough estimate, but one should use higher levels for high-accuracy distance

C140 MAXENCE REBEROL AND BRUNO L\'EVY

computations (e.g., distance to the reference solution in convergence analysis) or for
highly curved elements.

4. Results and discussion. In this section, we validate the distance approxi-
mation on simple problems with analytical solutions (section 4.1) and give insights on
how to choose the approximation parameters (number of samples, subdivision level
for curved cells) on practical problems (section 4.2). The following part (section 4.3)
focuses on the performance. A example of application (convergence analysis) is shown
for a linear elasticity problem (section 4.4). Visualization and interactive usage of our
approach are discussed (section 4.5). Eventually, the limitations of our approach are
summarized (section 4.6).

4.1. Validation on the sinus bump problems. When the analytical solution
of a problem is known, we can compute the finite element solution error by mapping
quadrature points (defined on the reference cell) to world-space and evaluating both
the approximated and the exact solutions at these mapped points. This procedure
is sufficiently fast as it does not involve inversing the mappings. In the following
examples, we use this error (computed with high-order quadratures) as the ground
truth, and we compare our approximated distance to this one. With the first example,
we show that our distance computation converges to the right values for linear and
trilinear finite elements. In the second example, we compute the distances to the
reference solution of a linear elasticity problem for various finite element bases and
show that they are the same as the finite element errors computed from quadratures.

First, we consider the sinus bump problem, which is a Poisson problem of the
form - \Delta u = f , where f = 3\pi 2 sin(\pi x) sin(\pi y) sin(\pi z), with homogeneous boundary
Dirichlet conditions, defined on the unit cube [0, 1]3. The known closed-form solution
is given by u = sin(\pi x) sin(\pi y) sin(\pi z). We solve this problem with the finite element
bases \BbbP 1 (linear) and \BbbQ 1 (trilinear); the solutions computed on meshes made of re-
spectively 7836 tetrahedra and 3375 hexahedra are shown in the left part of Figure 5.
To evaluate the impact of nonlinear element mappings, we built the meshes in such
a way such that the interior edges and faces do not align with the cube boundaries,
so the hexahedron faces are not planar. The reference errors (dotted lines in the plot
of Figure 5) are computed using high-order quadratures available in [2]. It is worth
mentioning that to get an accurate L\infty error, we used quadratures associated to poly-
nomials of order more than 20 (thousands of points per element) as the analytical
solution is not polynomial.

For the tetrahedral mesh, the errors plotted in Figure 5 (top) show that our
distance approximations converge quickly to the right values with the number of
samples. As expected, the L\infty -distance converges more slowly, since the L\infty -distance
measures the field difference where both fields differ the most, and obviously a uniform
sampling is not a very efficient way to find this point. Another aspect to consider
is that the fields are very smooth, so the number of samples required to converge in
this specific case may not be relevant for more difficult problems with more irregular
solutions.

In the hexahedral mesh, the interior faces are not planar as the hexahedra ge-
ometries are determined by trilinear mappings with bilinear faces. In our distance
approximation, we decompose such curved cells into subtetrahedra. Figure 5 shows
the impact of the subdivision level on the computed L\infty -distance. We only plot the
L\infty -distance because this is the worst case of the three distances (the same behavior
is observed for L1 and L2, to a lesser extent). From this example, we observe that
a simple decomposition of hexahedra into six tetrahedra is definitively not enough as

COMPUTING THE DISTANCE BETWEEN FEM SOLUTIONS C141

100 102 104 106 108

samples inside domain (log scale)

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

D
is

ta
n

ce
s

to
an

a
ly

ti
ca

l
so

lu
ti

on

L1

L2

L∞

quadratures

100 101 102 103 104 105 106 107

samples inside domain (log scale)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

L
∞

-d
is

ta
n

ce
to

an
a
ly

ti
ca

l
so

lu
ti

on 6 tets per hex

48 tets per hex

384 tets per hex

quadrature

Fig. 5. Distances to the analytical solution. Left: \BbbP 1 and \BbbQ 1 solutions defined on a tetrahedral
and a hexahedral mesh of the unit cube. Top-right: Convergence of the distance computations with
the number of samples inside the domain, for the \BbbP 1 solution of the sine bump problem. Bottom-
right: Impact of the subdivision level applied to hexahedra on the L\infty -distance to the reference
solution for a \BbbQ 1 solution of the sine bump problem. The reference distances (dotted lines) are
computed with high-order quadratures.

it leads to significant errors in the distance approximations. Otherwise, we see that
two levels of subdivision (that decompose each hexahedron into 384 subtetrahedra)
are sufficient to approach the exact distance on this problem. A single level of subdi-
vision (that decomposes each hex into 48 tets) can be enough if one is interested in
an approximated distance.

The second problem is a linear elasticity problem solved with the standard dis-
placement formulation. It is similar to the first one: unit cube domain, homogeneous
Dirichlet boundary conditions, and a displacement solution whose components are

\forall i \in [0, 2], ui = sin(2\pi x) sin(2\pi y) sin(2\pi z).

The problem is solved with tetrahedral and hexahedral meshes of various size, equipped
with Lagrange finite elements of orders one to three. We also compute a reference
solution with a fine mesh equipped with order four finite elements. For each approxi-

C142 MAXENCE REBEROL AND BRUNO L\'EVY

10 20 30 40 50 60 70

degrees of freedom1/3

10−4

10−3

10−2

10−1

100
R

el
.
L

2
-d

is
ta

n
ce

s
to

re
fe

re
n

ce
so

lu
ti

on

2

3

4

P1

P2

P3

Q1

Q2

Q3

quadratures

Fig. 6. Linear elasticity sine bump problem. Convergence of the Lagrange finite element
solutions to the reference solution with the number of degrees of freedom for the L2-distance. The
reference solution is P4 and is defined on a fine mesh. The Rel. L2-distance is the L2-distance divided
by the L2-norm of the reference solution. The dotted lines are the L2 finite element errors computed
with high-order quadratures. The loss of convergence in Q3 data points is due to insufficient element
decompositions in the distance computations.

mation space, we compute the L2 distance to the reference solution with our approach
and the finite element approximation error with high-order quadratures, as the an-
alytical solution is known. For the distance parameters, we use 5003 samples and a
subdivision level of three for the hexahedron mappings. We show the results as finite
element convergence plots (Figure 6). As the domain is a cube and the meshes are
isotropic, the cubic root of the number of degrees of freedom is approximatively pro-
portional to the maximum element size h. For linear elasticity, the L2 error estimate
associated to finite elements of order k is bounded by \| u - uh\| L2 < Chk+1.

We observe that the distance to a reference solution computed with our approach
is equal to the error computed with quadratures in most cases. However, the com-
puted distance is no longer exact for the refined hexahedral Q3 meshes. This error
is due to the piecewise-linear approximation of the trilinear mappings. As the finite
element approximation is becoming very accurate (inferior to 10 - 3), the approxima-
tion error made on the mapping is becoming dominant. This effect can be mitigated
by increasing the subdivision level to push away the issue.

From these validation cases, we conclude that our distance approximation has
a good behavior as it converges to the right values when increasing the number of
samples and as curved cells can be sufficiently approximated with subtetrahedra. Still,
it should be noted that high-accuracy measures require fine element decompositions
for curved elements. If the decomposition is insufficient, the computed distances can
be significantly wrong.

COMPUTING THE DISTANCE BETWEEN FEM SOLUTIONS C143

102 103 104 105 106 107 108 109

samples inside (log scale)

0.6

0.7

0.8

0.9

1.0

D
is

ta
n

ce
s

n
o
rm

al
iz

ed
b
y

la
st

va
lu

e

L1

L2

L∞

104 105 106 107 108 109

samples inside domain (log scale)

0.040

0.042

0.044

0.046

0.048

0.050

L
∞

-d
is

ta
n

ce

6 tets per hex

48 tets per hex

384 tets per hex

Fig. 7. hanger linear elasticity problem, displacement solution shown in Figure 12. Left:
Convergence of the L1, L2, L\infty distances; the distances are divided by their last values so the three
distances can be displayed with same scale. Right: Influence of the subdivision level on the L\infty -
distance computation for a hexahedral mesh of the hanger model.

4.2. Parameter sensitivity on nontrivial meshes and fields. In practice,
one has to choose a number of samples, and a subdivision level in the case of curved
elements. We present two examples that give insights on how to choose them.

Our first case study is a linear elasticity problem defined on a mechanical piece
that we referred to as hanger. The 3D model, the result of the finite element sim-
ulation, and examples of meshes are shown in Figure 12. A detailed study of the
convergence of the finite element basis on this problem will be presented in section
4.4. For now we focus on the convergence of the distance computation as a function
of our approximation parameters. In Figure 7 (left), we study the distance between a
\BbbP 3 solution obtained on a coarse tetrahedral mesh (86k tetrahedra) and another field
which is a \BbbP 2 solution defined on a fine mesh (960k tetrahedra). We observe that the
distance approximation has converged for less than ten millions of samples. This small
number of samples required can be explained by the smoothness of the displacement
field. In Figure 7 (right), we compute the distance between a \BbbP 2 solution defined
on a tetrahedral mesh (209k cells) and a \BbbQ 2 solution defined on a hexahedral mesh
(36k hexahedra), for which we apply different subdivision level during the L\infty -distance
computation. We observe that a single level of subdivision suffices, which corresponds
to approximate the geometry of hexahedra with 48 subtetrahedra. It is important to
notice that a simpler decomposition into six tetrahedra leads to significantly wrong
results.

The previous example only considers smooth fields (mechanical displacement from
linear elasticity); in the next example we will look at the behavior of the distance
computation with more irregular fields. To generate random fields with a controlled
spatial correlation, we use the Perlin noise algorithm [19]. The experimental results
in Figure 8 show that the convergence of the distance computation is slower for a
high frequency field, especially for the L\infty norm. This behavior is expected; however,
the convergence for high frequency fields is only slower by a reasonable factor even if
the frequency is much higher. This could be explained by the fact that the computed
distances (except the L\infty distances) are global and measure the differences in average,
so the global behavior is captured relatively quickly. In our experimental results, we
observed that it is very rare to need more than one billion samples inside the domain

C144 MAXENCE REBEROL AND BRUNO L\'EVY

104 105 106 107 108 109

samples inside domain (log scale)

0.5

0.6

0.7

0.8

0.9

1.0

D
is

ta
n

ce
s

n
or

m
al

iz
ed

b
y

la
st

va
lu

e

L1 low-freq

L2 low-freq

L∞ low-freq

L1 high-freq

L2 high-freq

L∞ high-freq

Fig. 8. Left: Cut carter model with Perlin random noise scalar fields, one low frequency and
one high frequency. Right: For both fields, the distances between two approximation bases (one P1

on a fine mesh and one P2 on a coarse mesh).

104 105 106 107 108 109

samples inside domain (log scale)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

R
el

.
va

ri
at

io
n

of
L

2
-d

is
ta

n
ce

×10−2

randomly rotated bbox

original bbox

104 105 106 107 108 109

samples inside domain (log scale)

−3

−2

−1

0

1

2

3

R
el

.
va

ri
at

io
n

of
L

2
-d

is
ta

n
ce

×10−2

randomly rotated bbox

original bbox

Fig. 9. Influence of the axes' orientation in function of sampling density. Left: Sine bump on
the cube. Right: Linear elasticity problem on the hanger model.

to converge, except maybe for pathological cases, but those are not typical results of
finite element simulations. In practice, to ensure that the sampling is sufficient, we
compute the distance several times while increasing the number of samples until the
computed distance is stable.

Our algorithm uses a regular grid of samples to evaluate the distance. We now
study the influence of the orientation of the axes as a function of the sampling density
in Figure 9 for the same simulations (sinus bump and linear elasticity), by estimating
the relative variation of the computed L2 distance for randomly rotated axes. As can
be seen, with one billion samples, the influence of the orientation becomes negligible.

4.3. Performance. As our approach exploits fast GPU operations, distance
computations usually take a few seconds with a mid-range desktop graphics card and
less than one second with a high-range one. In this subsection, we show the timings

COMPUTING THE DISTANCE BETWEEN FEM SOLUTIONS C145

model dim \# cells basis

\#1: joint (fig. 2) 1
10 k P2 (tet)
65 k P1 (tet)

\#2: hanger (fig. 12) 3
1 739 k P1 (tet)
343 k P2 (tet)

\#3: hanger (fig. 12) 3
36 k Q2 (hex)

290 k Q1 (hex)

\#4: carter (fig. 8) 1
1 210 k P1 (tet)
373 k P2 (tet)

\#5: 747 (fig. 11) 1
1 385 k P1 (tet)
577 k P2 (tet)

\#6: 40heads (fig. 11) 1
2 905 k P1 (tet)
2 350 k P2 (tet)

104 105 106 107 108 109

samples inside (log scale)

0.10

1.00

10.00

ti
m

e
(s

)
(l

og
sc

al
e)

#1

#2

#3 (hex, sl = 2)

#4

#5

#6

0.1 1.0 10.0

time (s) (log scale)

0.90

0.92

0.94

0.96

0.98

1.00

L
2
-d

is
ta

n
ce

(n
or

m
al

iz
ed

)

#1

#2

#3

#4

#5

#6

0.1 1.0 10.0

time (s) (log scale)

0.90

0.92

0.94

0.96

0.98

1.00

L
∞

-d
is

ta
n

ce
(n

or
m

al
iz

ed
)

#1

#2

#3

#4

#5

#6

Fig. 10. Top-left: Description of the pair of fields. Top-right: Evolution of the computation
time with the number of samples inside the domain. Bottom: The L2, L\infty computed distances versus
the computation time (which is linked to the number of samples in top-right plot). To display the
various test cases in the same plots, the L2 distance is divided by the last value obtained for each
model and the L\infty distance is divided by the maximum of the computed L\infty -distances for each model.

associated to the processing of various meshes and fields presented in this article. The
timings are affected by many factors: the number of samples inside the domain, the
number of cells in the meshes, the basis used for interpolation inside the cells, the
subdivision level used to approximate curved elements, and the dimension of the field
(scalar or vectorial). So the required time to get a good distance will vary with each
model, but the important point is that for standard meshes (up to a few millions of
cells), it is always possible to get an accurate distance in less than a few seconds.

The timings reported in Figure 10 are obtained with a Nvidia Geforce GTX 1080.
Each pair of fields is described in the table in Figure 10. For the hexahedral meshes, we
always used two levels of subdivision (each hex is decomposed into 384 tetrahedra),
which is the conservative choice according to our empirical results. The reported
timings do not include file transfer (from the hard-drive to the system memory), but
they do include the transfers from the system memory to the GPU memory. As we
are mainly interested in the minimal time required to get an accurate distance, we
plot the convergence of the L2, L\infty -distance against the timings in the right part of
Figure 10.

C146 MAXENCE REBEROL AND BRUNO L\'EVY

Fig. 11. Left: Perlin random field on model 747.2 Right: Perlin random noise on model 40
heads. The fine tetrahedral meshes are displayed in the zoomed parts.

In general, it takes less than one second to process up to one billion of samples
inside the domain for medium-sized meshes (between 100k and 1M cells). The hexa-
hedral meshes are processed more slowly, which is expected as each cell is decomposed
into hundreds of subtetrehadra, and this operation takes time, even if it is done di-
rectly on the GPU. Looking at the distance convergence (plots at the bottom of the
figure), we observe that we often reach a very accurate L2 computation in less than
one second even for large meshes. An accurate L\infty computation requires more sam-
ples for large meshes such as models \#5, \#6 (displayed in Figure 11), but it remains
in the range of a few seconds. A more complex example involving polynomials of
orders 5 and 7 on large meshes is presented in Appendix B.

These fast computations allow us to compute dozens of distances in minutes,
which is very useful for convergence analysis, such the one which is presented in
subsection 4.4. For larger meshes (dozens of millions of cells), our approach can scale
up with basic mesh decomposition. In this case, the computing time can go up to
minutes to get accurate values, but this is still several orders of magnitude faster as
compared with the time required by the corresponding finite element simulations.

4.4. Example of application: Accuracy of low-order Lagrange finite el-
ement basis on a linear elasticity problem. Analyzing convergence error plots
is a standard way to compare different finite element approaches applied to the same
problem. The errors can be efficiently computed when an analytical solution is known,
but this analytical solution exists only for simple cases: regular domains in 3D (cube,
sphere, L-shape) and relatively simple boundary conditions, source terms, and coef-
ficients. Our fast distance computation allows us to plot similar error convergences
for arbitrary domains and problems; the only drawback is that we have to choose a
reference solution that we consider as the ground truth. In the following example we
compute distances between solutions that have millions of degrees of freedom in a
short amount of time.

We consider a linear elasticity problem defined on the hanger model which is
shown in Figure 12. We used the hexahedral mesh available in the dataset of [14].
The inner cylinder on the left is fixed, and a uniform force is applied on the inner
cylinder on the right. The resulting deformed mesh is also shown in Figure 12. Tetra-

2Inria Gamma 3D meshes: https://www-roc.inria.fr/gamma/gamma/download/download.php.

https://www-roc.inria.fr/gamma/gamma/download/download.php

COMPUTING THE DISTANCE BETWEEN FEM SOLUTIONS C147

104 105 106 107

degrees of freedom

10−3

10−2

10−1

100

R
el

.
L

2
-d

is
ta

n
ce

s
to

re
fe

re
n

ce
so

lu
ti

on
P1

P2

P3

Q1

Q2

Q3

Fig. 12. The hanger linear elasticity problem. Left: Finite element solution, nondeformed
mesh in red; the color is the displacement magnitude. Right: Convergence of the Lagrange finite
element solutions to the reference solution with the number of degrees of freedom for the L2-distance.
The reference solution is P2 and is defined on a fine mesh. The Rel. L2-distance is the L2-distance
divided by the L2-norm of the reference solution.

hedral meshes of the model with various element sizes are generated by remeshing the
boundary with vorpaline [1] and meshing the interior with TetGen [22]. As hexahe-
dral meshing is a difficult problem, we use successive regular refinements (each hex
becomes 8 hexes) of the input model from [14]. We solve the problem using Lagrange
finite elements of orders one, two, and three, available in the mfem library [2].

For the error computation, the reference solution is a \BbbP 3 solution defined on a fine
mesh (960k tetrahedra, 13.6M degrees of freedom); we used 129M of samples inside
the domain and two subdivision levels in the hexahedral meshes (each hexahedron is
decomposed into 384 tetrahedra to approximate the geometry). In this case, com-
puting the 29 distances shown in Figure 12 took a total time of 30 seconds, whereas
computing the finite element solutions took about 12 hours.

The computed distances (to the reference solution) for each mesh and basis are
shown in the log-log plot of Figure 12. As expected, we observe that (a) for a given
basis, refining the mesh (increasing the number of degrees of freedoms in our plots) will
decrease the error, (b) increasing the polynomials of the Lagrange elements decreases
the error (for a given number of degrees of freedom), and (c) hexahedral elements
perform better than tetrahedral elements. It is especially interesting to observe that on
our problem, trilinear hexahedra are approximatively four times more accurate than
linear tetrahedra, whose errors are very large (a well-known fact of linear elasticity).

Contrary to the sine bump elasticity problem (Figure 6), we do not observe the
convergence rates predicted by the theory: second and third order finite elements
converge at the same rate as those of order one. Our hypothesis is that as there is no
body force in the hanger problem, the solution accuracies are not sufficient to observe
the right convergence rates, which would require very fine meshes.

When performing finite element convergence analysis, one should be aware that
the distances should not be interpreted blindly as finite element approximation errors
as the reference solution is not exact. What is measured is the convergence to the

C148 MAXENCE REBEROL AND BRUNO L\'EVY

Fig. 13. Left: Slice of a \BbbQ 1 solution of the sine bump problem. Center: Slice of absolute
difference of both solutions. Right: Slice of a \BbbP 1 solution of the sine bump problem.

reference solution and not the convergence to the real one. In practice, a safe approach
for analysis is to only observe the solutions that are sufficiently far away from the
reference field (e.g., at least three times less accurate).

This case study shows that our distance computation allows us to quantitatively
compare different finite element solutions on complicated and large meshes in a rea-
sonable time. It was applied to the simple displacement formulation of the linear
elasticity, but it can be easily adapted to compare solutions on more complicated
approximation spaces (discontinuous-Galerkin, mixed finite elements, etc.) and other
norms such as H1.

4.5. Information extraction and interactive visualization. Even if our
initial goal is to compute global distances, our pipeline computes the field difference
at each sample point. This information can be relevant for further analysis.

Visualization and export. In our implementation, the GPU memory contains the
values of f , g, and f - g at sample points in textures Tf , Tg, Td at each slice. Visual-
izing these textures in a graphical interface is straightforward and one can manually
examine the field values, as illustrated in Figure 13. The visual approach turns out
to be a valuable tool when trying to understand how element shapes, or any other
properties, affect the numerical solutions. The textures can be exported as images,
or the whole field voxelization can be saved in a file and analyzed in another software
with advanced visualization features (e.g., iso-values visualization, transparency).

Potential extensions. More specific tasks can also be easily implemented: extract-
ing the samples where the distance is superior to a given threshold, computing local
distances for each cell, etc.

In this work, we only considered the basic L1, L2, L\infty distances, which may not be
suited to measure relevant information for certain types of problems. For instance, if
one is interested in describing a localized wave front, a global Lp distance, where the
entire domain will average down the distance, is probably not a relevant measure. Our
approach, which relies on a voxel grid, can be easily adapted, for instance, by adding
voxel weights, higher for samples closer to the area of interest and lower elsewhere, or
by only computing the distance in a localized window.

4.6. Limitations. Our distance approximation suffers from limitations due to
the inherent usage of regular sampling, mapping approximation for curved elements,
and GPU hardware.

Regular sampling. The distance is determined by the values of the fields at reg-
ularly spaced samples. We can imagine cases where this sampling totally misses the

COMPUTING THE DISTANCE BETWEEN FEM SOLUTIONS C149

relevant values of the inputs. This should not happen for sufficiently smooth fields,
such as Lagrange finite element solutions, but users should be aware that regular
sampling does not efficiently capture high-frequency features.

The regular sampling has a direction bias (axis of the bounding box) that slightly
affects the voxel-approximation of the mesh boundaries. In the same spirit, if one is
studying piecewise-discontinuous fields, the sampling of the interior interfaces will be
affected by the bounding box axis. We claim that these flaws are negligible in practice
for most applications (when using a large number of samples), but one should be aware
of them.

Curved element mapping approximations. Nonaffine element mappings are ap-
proximated by piecewise-affine mappings (i.e., decomposition in tetrahedra). The
error due to this approximation depends on the subdivision level. As shown in
Figure 6, this error can become dominant when considering highly accurate finite
element fields. A first solution is to increase the subdivision level, but high subdivi-
sion levels (sl > 3) slow down our approach significantly. An alternative approach
could be to use our element decomposition as a first approximation of the reference
coordinates, and then to refine the coordinates with a few iterations of a Newton--
Raphson algorithm applied to the forward mapping.

GPU limitations. Our approach relies heavily on the processing power of GPU
hardware; thus a first limitation is to have a sufficiently powerful graphics card. In
practice, this excludes computers with a processor-integrated GPU. Considering the
driver limitations, our implementation requires OpenGL 4.3, which may not be avail-
able on all operating systems. However, it is totally possible to implement our ap-
proach on the CPU, and it would probably have reasonable performance with enough
optimization (parallelization, SIMD operations).

Considering the numerical accuracy of our implementation, all the computations
are done with 32-bit floats. Support for double precision (64 bits) is poor in OpenGL,
and it would be more practical to implement it with a computing framework such as
OpenCL or CUDA. The usage of 32-bit floats has not been an issue in our experience,
but it could be when processing very large meshes.

In our implementation, both meshes and their associated field coefficients are
uploaded into the GPU memory at the initialization. So a direct limitation is that
the inputs should fit in the memory. With our GPU, this limit is 8 GB, which is enough
to deal with pretty large meshes. But for larger ones, or for small GPU capacities, a
simple improvement is to decompose both inputs into smaller meshes using standard
mesh decomposition techniques and then to process them sequentially.

For a given slice, we compute all the sample values at the same time. For large
meshes, this can require using a large pixel grid (e.g., 5k\times 5k), which is not well suited
for GPUs which are optimized for rendering at screen resolutions. A possibility is to
decompose the slices into smaller subslices and to process them sequentially (i.e.,
slice zooms). This decomposition could also be efficient to deal with large meshes
composed of many holes or sparse structures, as one could preprocess the model and
build a tree to know in advance which subslices contain samples and which do not.

5. Conclusion. In this work, we have presented an efficient Lp distance com-
putation method between fields defined on distinct 3D unstructured meshes of the
same model. The computation is based on a regular sampling of both input fields.
The efficiency of the approach relies on exploiting GPU hardware that allows us to
process a very large number of samples in a short amount of time. The accuracy of
the computation has been discussed with an analytical solution and the convergence

C150 MAXENCE REBEROL AND BRUNO L\'EVY

has been shown for various test cases. The speed of our solution makes it a practical
and interactive tool, useful for developing and analyzing numerical methods, mainly
in the context of the finite element framework. The element-based approach makes
it flexible: our implementation naturally supports nonconforming meshes, discontin-
uous finite element solutions, and meshes mixing different types of elements (e.g.,
hex-dominant meshes).

The approach we propose relies on two parameters: the number of samples and
the subdivision level for curved elements. Users should always check that the chosen
values are suited for the considered application. For instance, an insufficient element
decomposition can lead to distorted convergence rates in finite element convergence
analysis. But as the distance computation is fast, it is easy to run the same compu-
tation with increased parameter values and to verify that the computed distances are
the same.

Our implementation of the distance computation is open-source and can be re-
used or modified to accommodate specific needs. The distance computation is exten-
sible: other norms, such as H1, can be supported. It only requires small adaptations
such as changing the field evaluation and slice contribution steps. One can also ex-
tend it by introducing mesh decompositions for very large meshes or zooms to study
localized features in the fields (e.g., wavefronts).

Appendix A. GPU implementation details. Graphic cards (GPU) deal
efficiently with highly parallelizable tasks and have dedicated hardware to rasterize
triangles and to compute linear interpolation inside them. The goal of our implemen-
tation is to take full advantage of these properties.

Our implementation follows Algorithms 1 and 3. The adapted version correspond-
ing to our OpenGL implementation in summarized in Algorithm 4. The different steps
are discussed in the next paragraphs.

Algorithm 4. Overview of OpenGL implementation.

for each slice k in [1, ns] do
render the field slice of f in texture Tf \triangleleft rendering pipeline
render the field slice of g in texture Tg \triangleleft rendering pipeline
compute the texture difference Td = Tf - Tg \triangleleft texture difference
reduce texture Td in the kth column of the texture TN \triangleleft texture reduction

end for
transfer the texture TN from the GPU to the CPU
compute the global distance from TN values

A.1. Rendering pipeline. Instead of rendering to the screen, we render to a
framebuffer object which is a rectangular grid of size nx \ast ny, such as 1000 \times 800.
In practice, the size of the grid is determined by the resolution parameter h which
determines the voxel grid dimensions (samples are equally spaced in the three axes).
With OpenGL, instead of rendering RGBA colors, it is possible to produce floating-
point values (32 bits), so all our texture data types are GL FLOAT.

The rendering pipeline is called at each slice of a mesh via a call to the glDrawEle-
mentsInstanced()3 command, with the primitive argument GL LINES ADJACENCY,
which indicates that we pack vertices four by four for processing by the geometry
shader. An overview of our rendering pipeline is given in Figure 14.

3OpenGL 4.5 Reference Pages https://www.opengl.org/sdk/docs/man4/.

https://www.opengl.org/sdk/docs/man4/

COMPUTING THE DISTANCE BETWEEN FEM SOLUTIONS C151

Vertex
shader

• mapping of
 sub-tetrahedra
• assign reference
 coordinates

Geometry
shader

• marching tetrahedra

Rasterization

• interpolate reference
 coordinates at samples

Fragment
shader

• evaluate field values

Fig. 14. OpenGL rendering pipeline used to sample a field on a pixel grid.

When calling glDrawElementsInstanced(), we draw multiple instances of a group
of elements. In our case, the group of elements corresponds to our reference element.
For tetrahedral meshes, it will be a single tetrahedron. In the case of curved elements,
it will be the subtetrahedra of the reference element decomposition.

The OpenGL computing blocks are called shaders. Each shader, or stage, is
responsible for certain tasks. In our implementation, the tasks are distributed as
follows:
(a) The vertex shader has tetrahedra in input (the element decomposition), and it

applies the element mappings. The reference coordinates are associated to each
of the tetrahedron vertices (e.g., (0, 0, 0) is associated to the first vertex of the
current tetrahedron, (1, 0, 0) to the second one, etc.). The mapping coefficients
are passed to the vertex shader via OpenGL attributes, which change for each
instance.

(b) The geometry shader is executed one time for each tetrahedron; it runs the march-
ing tetrahedra algorithm and outputs 0, 1, or 2 triangles that have the interpolated
reference coordinates at their vertices.

(c) The rasterization step is done automatically by OpenGL. It interpolates linearly
the reference coordinates at pixel centers of the grid which are inside the triangle
and it calls the fragment shader for each of them.

(d) The fragment shader is responsible for producing the rendering output. In our
approach, it receives the reference coordinates (from the rasterization) and com-
putes the field values by applying the interpolation function (which requires access
to the field coefficients). We further discuss this step in the next paragraph.
If the field is composed of multiple types of elements (e.g., tetrahedra and hex-

ahedra), we call the rendering pipeline one time for each type of element. If it is
composed of multiple finite element bases, we also call the rendering for each one.

Field values interpolation. One could transfer the reference coordinates from the
GPU to the CPU and evaluate the interpolation functions on the CPU. However,
data transfers between CPU and GPU are slow, and transferring two large grids of
values (one per field) at each slice takes far more time than the rendering; thus we
advocate maximizing the number of computations done on the GPU and minimizing
the number of transfers. So, we evaluate the interpolation functions on the GPU.
This requires uploading (only one time at the initialization) the field coefficients to
the GPU memory and accessing them during the field evaluation in the fragment
shader. Consider a mesh with one million cells, 10 degrees of freedom per element,
e.g., \BbbP 2 tetrahedra, and a vectorial field of dimension 3, e.g., displacement in linear
elasticity. In such a case, there are 30 million floating-point values which need to be
accessed by the GPU. Such an amount of data does not fit in the memory of textures,
uniform buffer objects, or buffer textures. One possibility could be to divide the data
into many textures, but this would complicate the implementation. Instead we use
the Shader Storage Buffer Objects (SSBO) that have been introduced in OpenGL 4.3,

C152 MAXENCE REBEROL AND BRUNO L\'EVY

- --

Fig. 15. Distance computation from the field samplings. (a) Processing of slicing plane k. (b)
Final reduction of the slice contributions to the global distance.

as their maximal size is typically the GPU memory.
The output of the rendering pipeline is a texture with the field values (or no

data value at pixels which are not inside the domain). If the field is scalar, the
texture format is GL RED (single value per pixel). If the field is vectorial, we use,
respectively, the types GL RG, GL RGB, GL RGBA for dimensions two, three, and
four. For higher dimensions, one needs to use multiple output textures.

A.2. Texture difference. As both textures Tf , Tg associated to fields f and g
are available on the GPU memory, we can easily compute the difference Td in another
texture by drawing a quad that calls the fragment shader for each pixel. Then, the
fragment shader computes a simple subtraction (that acts component per component
if the field is vectorial).

A.3. Texture reduction. As we said before, transfer times between GPU and
CPU are slow and can quickly become the performance bottleneck. So we process the
difference texture Td directly on the GPU.

We store the contribution of a slice to the global distances in a texture TN . TN

is a texture of size ny \ast ns in which each column is the contribution from the slice
difference k, denoted Ck. The slice contribution Ck is a column vector where each
component is the sum of values along the associated row of Td. This is illustrated in
Figure 15(a). We do not compute only one contribution value per slice because we
want to exploit the GPU parallelism, and aggregating the values of one column to
one value would not be efficient (the texture dimensions are not power of two).

When the field is vectorial, we combine the different components with the root
mean square formula during the reduction. Also, we apply the adapted p-power of the
Lp-distance, or we take the absolute maximum of the difference for the L\infty -distance.
To compute the global distance in the end, one needs to know the number of samples
inside the domain for each slice. This number is stored as a component of the TN

texture, which is multivalued.

COMPUTING THE DISTANCE BETWEEN FEM SOLUTIONS C153

108 109 1010

samples inside (log scale)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

D
is

ta
n

ce
s

n
or

m
al

iz
ed

b
y

la
st

va
lu

e

L1

L2

L∞

0 20 40 60 80 100

time (s)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

D
is

ta
n

ce
s

n
o
rm

a
li
ze

d
b
y

la
st

va
lu

e

L1

L2

L∞

Fig. 16. Convergence and performance on large tetrahedral meshes (2 905k and 2 350k cells)
with high-order polynomials (P5 and P7). Left: Convergence of the distance computations with
respect to the number of samples inside both meshes. Right: Convergence with respect to the com-
putation time.

Eventually, one needs to combine the values of TN into one 1D texture, then
transfer it on the CPU, and then process it to get the global distance (illustration in
Figure 15(b)).

For efficiency, we compute multiple distances at a time by storing various con-
tributions in the multivalued texture TN . In our implementation, we compute the
L1, L2, L\infty distances, but this can be easily changed.

Remark 1. It is entirely possible to adopt other reduction strategies to go from
2D textures to one-value contributions, but one should be aware that our textures are
neither power of two nor squares.

Appendix B. Example with high-order polynomials on large meshes. In
this example, we compute the distances between two fields defined on two unrelated
tetrahedral meshes of the model 40 heads shown in Figure 11. This 3D model has
many complicated geometrical features and covers only 20\% of its bounding box. The
field is a Perlin noise [19] projected onto two approximation spaces: the first one uses
\BbbP 5 elements (56 degrees of freedom) on 2 905k tetrahedra, and the other one uses \BbbP 7

elements (120 degrees of freedom) on 2 305k tetrahedra. These spaces have 64M and
146M degrees of freedom, respectively. This example involves large voxel grids (up to
3752x3067x2200) and requires 3 GB of memory on the GPU.

The convergence of the L1, L2, and L\infty distance computations with respect to
the number of samples and to the timings are shown in Figure 16. We see that the
convergence is slower than with the low-order examples as it requires many samples
(similarly to quadrature requirements for such orders). Moreover, evaluating high-
order polynomials at each sample is more expensive. However, it remains reasonably
fast (one minute) considering the size of the discretized fields (64M versus 146M
degrees of freedom).

Our implementation scales up to Lagrange elements of order 9, but it starts
to become slow because we did not implement optimized evaluations of high-order
polynomials yet.

C154 MAXENCE REBEROL AND BRUNO L\'EVY

REFERENCES

[1] Geogram: A Programming Library of Geometric Algorithms, http://alice.loria.fr/software/
geogram/doc/html/index.html.

[2] MFEM: Modular Finite Element Methods, http://mfem.org.
[3] D. Akio and A. Koide, An efficient method of triangulating equi-valued surfaces by using

tetrahedral cells, IEICE Trans. Inform. Syst., 74 (1991), pp. 214--224.
[4] F. Alauzet, A parallel matrix-free conservative solution interpolation on unstructured tetra-

hedral meshes, Comput. Methods Appl. Mech. Engrg., 299 (2016), pp. 116--142, https:
//doi.org/10.1016/j.cma.2015.10.012.

[5] M. Brasher and R. Haimes, Rendering planar cuts through quadratic and cubic finite ele-
ments, in IEEE Visualization, 2004, IEEE, Washington, DC, 2004, pp. 409--416, https:
//doi.org/10.1109/VISUAL.2004.91.

[6] P. Bussetta, R. Boman, and J.-P. Ponthot, Efficient 3D data transfer operators based
on numerical integration, Internat. J. Numer. Methods Engrg., 102 (2015), pp. 892--929,
https://doi.org/10.1002/nme.4821.

[7] P. E. Farrell, The addition of fields on different meshes, J. Comput. Phys., 230 (2011),
pp. 3265--3269, https://doi.org/10.1016/j.jcp.2011.01.028.

[8] P. E. Farrell, M. D. Piggott, C. C. Pain, G. J. Gorman, and C. R. G. Wilson, Con-
servative interpolation between unstructured meshes via supermesh construction, Comput.
Methods Appl. Mech. Engrg., 198 (2009), pp. 2632--2642, https://doi.org/10.1016/j.cma.
2009.03.004.

[9] Y. Feng, D. Peri\'c, and D. Owen, A non-nested Galerkin multi-grid method for solving
linear and nonlinear solid mechanics problems, Comput. Methods Appl. Mech. Engrg.,
144 (1997), pp. 307--325, https://doi.org/10.1016/s0045-7825(96)01183-8.

[10] C. Geuzaine, B. Meys, F. Henrotte, P. Dular, and W. Legros, A Galerkin projection
method for mixed finite elements, IEEE Trans. Magnetics, 35 (1999), pp. 1438--1441, https:
//doi.org/10.1109/20.767236.

[11] B. Haasdonk, M. Ohlberger, M. Rumpf, A. Schmidt, and K. G. Siebert, Multiresolution
visualization of higher order adaptive finite element simulations, Computing, 70 (2003),
pp. 181--204.

[12] X. Jiao and M. T. Heath, Common-refinement-based data transfer between non-matching
meshes in multiphysics simulations, Internat. J. Numer. Methods Engrg., 61 (2004),
pp. 2402--2427, https://doi.org/10.1002/nme.1147.

[13] A. O. Leone, P. Marzano, E. Gobbetti, R. Scateni, and S. Pedinotti, Discontinuous
finite element visualization, in Proceedings of the 8th International Symposium on Flow
Visualization, Sorrento, Italy, 1998.

[14] M. Livesu, A. Sheffer, N. Vining, and M. Tarini, Practical hex-mesh optimization via edge-
cone rectification, ACM Trans. Graphics, 34 (2015), 141, https://doi.org/10.1145/2766905.

[15] S. Menon and D. P. Schmidt, Conservative interpolation on unstructured polyhedral meshes:
An extension of the supermesh approach to cell-centered finite-volume variables, Comput.
Methods Appl. Mech. Engrg., 200 (2011), pp. 2797--2804, https://doi.org/10.1016/j.cma.
2011.04.025.

[16] B. Nelson and R. M. Kirby, Ray-tracing polymorphic multidomain spectral/hp elements
for isosurface rendering, IEEE Trans. Vis. Comput. Graphics, 12 (2006), pp. 114--125,
https://doi.org/10.1109/tvcg.2006.12.

[17] B. Nelson, R. M. Kirby, and R. Haimes, GPU-based interactive cut-surface extraction from
high-order finite element fields, IEEE Trans. Vis. Comput. Graphics, 17 (2011), pp. 1803--
1811, https://doi.org/10.1109/tvcg.2011.206.

[18] J. Peraire, J. Peiro, and K. Morgan, Multigrid solution of the 3-D compressible Euler
equations on unstructured tetrahedral grids, Internat. J. Numer. Methods Engrg., 36 (1993),
pp. 1029--1044, https://doi.org/10.1002/nme.1620360610.

[19] K. Perlin, An image synthesizer, SIGGRAPH Comput. Graph., 19 (1985), pp. 287--296, https:
//doi.org/10.1145/325165.325247.

[20] S. Plimpton, B. Hendrickson, and J. Stewart, A parallel rendezvous algorithm for inter-
polation between multiple grids, in Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing, SC '98, ACM, New York, IEEE Computer Society, Washington, DC,
1998, pp. 1--8, https://doi.org/10.1109/sc.1998.10032.

[21] J.-F. Remacle, N. Chevaugeon, \'E. Marchandise, and C. Geuzaine, Efficient visualization
of high-order finite elements, Internat. J. Numer. Methods Engrg., 69 (2007), pp. 750--771,
https://doi.org/10.1002/nme.1787.

http://alice.loria.fr/software/geogram/doc/html/index.html
http://alice.loria.fr/software/geogram/doc/html/index.html
http://mfem.org
https://doi.org/10.1016/j.cma.2015.10.012
https://doi.org/10.1016/j.cma.2015.10.012
https://doi.org/10.1109/VISUAL.2004.91
https://doi.org/10.1109/VISUAL.2004.91
https://doi.org/10.1002/nme.4821
https://doi.org/10.1016/j.jcp.2011.01.028
https://doi.org/10.1016/j.cma.2009.03.004
https://doi.org/10.1016/j.cma.2009.03.004
https://doi.org/10.1016/s0045-7825(96)01183-8
https://doi.org/10.1109/20.767236
https://doi.org/10.1109/20.767236
https://doi.org/10.1002/nme.1147
https://doi.org/10.1145/2766905
https://doi.org/10.1016/j.cma.2011.04.025
https://doi.org/10.1016/j.cma.2011.04.025
https://doi.org/10.1109/tvcg.2006.12
https://doi.org/10.1109/tvcg.2011.206
https://doi.org/10.1002/nme.1620360610
https://doi.org/10.1145/325165.325247
https://doi.org/10.1145/325165.325247
https://doi.org/10.1109/sc.1998.10032
https://doi.org/10.1002/nme.1787

COMPUTING THE DISTANCE BETWEEN FEM SOLUTIONS C155

[22] H. Si, TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Soft-
ware, 41 (2015), 11, https://doi.org/10.1145/2629697.

[23] S. R. Slattery, P. P. H. Wilson, and R. P. Pawlowski, The data transfer kit: A geometric
rendezvous-based tool for multiphysics data transfer, in Proceedings of the 2013 Interna-
tional Conference on Mathematics and Computational Methods Applied to Nuclear Science
and Engineering (Sun Valley, ID), American Nuclear Society, La Grange Park, IL, 2013,
pp. 1262--1272.

[24] G. M. Treece, R. W. Prager, and A. H. Gee, Regularised marching tetrahedra: Improved
iso-surface extraction, Computers \& Graphics, 23 (1999), pp. 583--598, https://doi.org/10.
1016/s0097-8493(99)00076-x.

[25] M. \"Uffinger, S. Frey, and T. Ertl, Interactive high-quality visualization of higher-order
finite elements, in Computer Graphics Forum, 29 (2010), pp. 337--346, https://doi.org/
10.1111/j.1467-8659.2009.01603.x.

https://doi.org/10.1145/2629697
https://doi.org/10.1016/s0097-8493(99)00076-x
https://doi.org/10.1016/s0097-8493(99)00076-x
https://doi.org/10.1111/j.1467-8659.2009.01603.x
https://doi.org/10.1111/j.1467-8659.2009.01603.x

	Introduction
	Related work
	Distance via quadratures
	Finite element visualization techniques

	Our method: L^p-distance approximation via slicing and sampling
	Overview
	Problem setting
	Slicing
	Sampling the field on a 2D pixel grid
	Extension to curved elements

	Results and discussion
	Validation on the sinus bump problems
	Parameter sensitivity on nontrivial meshes and fields
	Performance
	Example of application: Accuracy of low-order Lagrange finite element basis on a linear elasticity problem
	Information extraction and interactive visualization
	Limitations

	Conclusion
	Appendix A. GPU implementation details
	Rendering pipeline
	Texture difference
	Texture reduction

	Appendix B. Example with high-order polynomials on large meshes
	References

