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Distance between FEM solutions

Subject of the talk:

How to compute ?
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Motivations

How to evaluate FEM accuracy and performance ?
(influence of meshes, refinement, order, etc)

1.  If analytical solution is known:
    - compute error (L2, H1, ..) with quadratures
 
    - problems can be built with Method of Manufactured Solutions:
 
         a) choose analytical solution
 
         b) inject in problem (domain + PDE + BCs)
 
         c) derive formula for source term and BCs
      [Salari00, Roache02]
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Motivations: evaluation of FEM accuracy

1.  If analytical solution, convergence analysis is easy:
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Motivations: evaluation of FEM accuracy

1.  If analytical solution, convergence analysis is easy..
     but results are not representative of real-life performance or accuracy:
 
     - very simple domains (unit cube usually)
 
     - analytical RHS everywhere, no propagation from 
       boundaries (contrary to real-life problems where RHS is null/constant)
 
     - measuring source term approximation (or coefficients, BCs, etc)
          e.g.                      ,   f not in the approximation space         
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Motivations: evaluation of FEM accuracy

2.  If no analytical solution, use a reference solution
 
For specific applications, compare relevant quantities:
  - maximum stress (mechanics), drag coefficient (aerodynamic),
  eigenvalues, etc
 
For general purpose, how to compute (L2,H1,..) errors ?
   - approximate error with distance to reference solution
 
New question: how to compute distances ?
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Distance computation

Integral replaced by weighted sum: 

 

 

 

 

 

 

 

Proper way: it's FEM, so let's use quadratures

                      (requires mesh and local interpolation)

 

 

 

 

 

 

 
3D with curved cells (hexahedra, quadratic tets, etc) ?

Bibliography:

  supermesh

  rendezvous mesh

  intersection mesh
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Distance computation with regular sampling

Computer graphics approach:
 
   - sampling of both fields on a (large) regular voxel grid (typical size:            )
   - slice by slice (low memory consumption)
 
 
 
 
 
 
 

(slice of a FEM field)
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Distance computation: global algorithm

- --

1. Initialization 

     (upload data to GPU)

 

2. For each slice:

     - render field A

     - render field B

     - compute difference

     - store contribution 

       to distance

 

3. Combine contributions 

    to get global distance
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Computing the field values

FEM interpolation is defined per cell:
- mapping from reference element to world space
- interpolation defined in reference element
 
 
 
 
 
 
 

reference
coordinates

At each pixel:
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Computing the field values

shape functions evaluated
exactly in the fragment shader
 
(pixel exact rendering
           e.g. [BH04, NHK11])

- reference coordinates at
  triangle vertices with
  marching tetrahedra [AK91]
 
- rasterization for linear 
  interpolation at pixel centers
 
no mapping inversion
exact for linear mappings (tetraedra)
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Curved (non-affine) elements

is approximated by a piecewise-linear mapping

i.e. curved geometry approximated by subdivision
reference coordinates, used in evaluation, are no longer exact

(done on the GPU using the instance rendering feature of OpenGL)
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Summary of the OpenGL rendering

- Vertex shader: mapping
                             decomposition if curved
     (mesh coefficients via VertexAttributes)
 
- Geometry shader: marching tetrahedra
 
 
- Rasterization (OpenGL): linear interpolation of ref. coords.
 
 
- Fragment shader: shape functions evaluation
     (field coefficients via SSBO)
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Parameter sensitivity

- # samples (voxel grid resolution):

- approximation of curved cells:

(10-100 millions samples inside at worst)

(subdivision required !)
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Parameter sensitivity

- voxel grid orientation (two examples):

(ok after a few millions of samples, base orientation is usally good)
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Validation
- linear elasticity problem with analytical solution (built with MMS)
- exact errors computed with high-order quadratures (dotted lines)
- distances to reference solution (fine mesh with P4) for various meshes and orders
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Validation
- linear elasticity problem with analytical solution (built with MMS)
- exact errors computed with high-order quadratures (dotted lines)
- distances to reference solution (fine mesh with P4) for various meshes and orders

insufficient hex
decomposition
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Performance

Less than one second for standard meshes (~ 1 million cells)
(timings obtained with Nvidia 1080 GTX)
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Performance on large fields

convergence: ~ 1 minute

Field A: 2905k tets P5, 64M dofs
Field B: 2305k tets P7, 146M dofs
sparse model structure: ~20% of bbox
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Visualization of slice difference

Q1 P1difference

Visualization is free (textures are available on the GPU memory)
convenient for debugging or investigating FEM behavior
 



21

Visualization of slice difference

 

Difference: 

Hex-Tet P2/Q1 vs  P1
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Application: convergence analysis on 3D models
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Application: convergence analysis on 3D models
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More information
- Article (detailed explanation):
Reberol, M., and Lévy, B., Computing the distance between two finite element solutions 
defined on different 3D meshes on a GPU, SIAM Journal on Scientific Computing (accepted, 2018)
- Software:  github.com/mxncr/FFES,  file format:

Mapping and interpolation included in file format

Support for arbitrary mapping/interpolation:
       write the GLSL functions in the input file
 

- Limitations: OpenGL 4.2., memory, 32bits float rasterization
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Conclusion

- A fast (real-time) and flexible approach to compute distances
between FEM solutions

- Usage: increase parameters (samples, subdivision) to verify convergence
of the distance computation

Perspectives

- Integration into Graphite/Geogram for better interactive visualization

- More efficient curved cell mappings (Newton-like correction)

- CPU implementation for portability
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Thank you for your attention
 
 
 

Questions ?
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