
1

Efficient computation of distances between
FEM solutions defined on different 3D meshes

Maxence Reberol, Bruno Lévy
ALICE team, Inria Grand-Est

CHANGE workshop, Leysin February 2018

2

Distance between FEM solutions

Subject of the talk:

How to compute ?

3

Motivations

How to evaluate FEM accuracy and performance ?
(influence of meshes, refinement, order, etc)

1. If analytical solution is known:
 - compute error (L2, H1, ..) with quadratures

 - problems can be built with Method of Manufactured Solutions:

 a) choose analytical solution

 b) inject in problem (domain + PDE + BCs)

 c) derive formula for source term and BCs
 [Salari00, Roache02]

4

Motivations: evaluation of FEM accuracy

1. If analytical solution, convergence analysis is easy:

5

Motivations: evaluation of FEM accuracy

1. If analytical solution, convergence analysis is easy..
 but results are not representative of real-life performance or accuracy:

 - very simple domains (unit cube usually)

 - analytical RHS everywhere, no propagation from
 boundaries (contrary to real-life problems where RHS is null/constant)

 - measuring source term approximation (or coefficients, BCs, etc)
 e.g. , f not in the approximation space

6

Motivations: evaluation of FEM accuracy

2. If no analytical solution, use a reference solution

For specific applications, compare relevant quantities:
 - maximum stress (mechanics), drag coefficient (aerodynamic),
 eigenvalues, etc

For general purpose, how to compute (L2,H1,..) errors ?
 - approximate error with distance to reference solution

New question: how to compute distances ?

7

Distance computation

Integral replaced by weighted sum:

Proper way: it's FEM, so let's use quadratures

 (requires mesh and local interpolation)

3D with curved cells (hexahedra, quadratic tets, etc) ?

Bibliography:

 supermesh

 rendezvous mesh

 intersection mesh

8

Distance computation with regular sampling

Computer graphics approach:

 - sampling of both fields on a (large) regular voxel grid (typical size:)
 - slice by slice (low memory consumption)

(slice of a FEM field)

9

Distance computation: global algorithm

- --

1. Initialization

 (upload data to GPU)

2. For each slice:

 - render field A

 - render field B

 - compute difference

 - store contribution

 to distance

3. Combine contributions

 to get global distance

10

Computing the field values

FEM interpolation is defined per cell:
- mapping from reference element to world space
- interpolation defined in reference element

reference
coordinates

At each pixel:

11

Computing the field values

shape functions evaluated
exactly in the fragment shader

(pixel exact rendering
 e.g. [BH04, NHK11])

- reference coordinates at
 triangle vertices with
 marching tetrahedra [AK91]

- rasterization for linear
 interpolation at pixel centers

no mapping inversion
exact for linear mappings (tetraedra)

12

Curved (non-affine) elements

is approximated by a piecewise-linear mapping

i.e. curved geometry approximated by subdivision
reference coordinates, used in evaluation, are no longer exact

(done on the GPU using the instance rendering feature of OpenGL)

13

Summary of the OpenGL rendering

- Vertex shader: mapping
 decomposition if curved
 (mesh coefficients via VertexAttributes)

- Geometry shader: marching tetrahedra

- Rasterization (OpenGL): linear interpolation of ref. coords.

- Fragment shader: shape functions evaluation
 (field coefficients via SSBO)

14

Parameter sensitivity

- # samples (voxel grid resolution):

- approximation of curved cells:

(10-100 millions samples inside at worst)

(subdivision required !)

15

Parameter sensitivity

- voxel grid orientation (two examples):

(ok after a few millions of samples, base orientation is usally good)

16

Validation
- linear elasticity problem with analytical solution (built with MMS)
- exact errors computed with high-order quadratures (dotted lines)
- distances to reference solution (fine mesh with P4) for various meshes and orders

17

Validation
- linear elasticity problem with analytical solution (built with MMS)
- exact errors computed with high-order quadratures (dotted lines)
- distances to reference solution (fine mesh with P4) for various meshes and orders

insufficient hex
decomposition

18

Performance

Less than one second for standard meshes (~ 1 million cells)
(timings obtained with Nvidia 1080 GTX)

19

Performance on large fields

convergence: ~ 1 minute

Field A: 2905k tets P5, 64M dofs
Field B: 2305k tets P7, 146M dofs
sparse model structure: ~20% of bbox

20

Visualization of slice difference

Q1 P1difference

Visualization is free (textures are available on the GPU memory)
convenient for debugging or investigating FEM behavior

21

Visualization of slice difference

Difference:

Hex-Tet P2/Q1 vs P1

22

Application: convergence analysis on 3D models

23

Application: convergence analysis on 3D models

24

More information
- Article (detailed explanation):
Reberol, M., and Lévy, B., Computing the distance between two finite element solutions
defined on different 3D meshes on a GPU, SIAM Journal on Scientific Computing (accepted, 2018)
- Software: github.com/mxncr/FFES, file format:

Mapping and interpolation included in file format

Support for arbitrary mapping/interpolation:
 write the GLSL functions in the input file

- Limitations: OpenGL 4.2., memory, 32bits float rasterization

25

Conclusion

- A fast (real-time) and flexible approach to compute distances
between FEM solutions

- Usage: increase parameters (samples, subdivision) to verify convergence
of the distance computation

Perspectives

- Integration into Graphite/Geogram for better interactive visualization

- More efficient curved cell mappings (Newton-like correction)

- CPU implementation for portability

26

Thank you for your attention

Questions ?

27

References
[Salari00] Salari, Kambiz and Knupp, Patrick

 Code Verification by the Method of Manufactured Solutions, 2000

[Roache02] Roache, Patrick J.

 Code Verification by the Method of Manufactured Solutions, 2002

[BH04] Brasher, M. and Haimes, R.

 Rendering planar cuts through quadratic and cubic finite elements, 2004

[NHK11] Nelson, B. and Haimes, R. and Kirby, R. M., 2011

 GPU-Based Interactive Cut-Surface Extraction From High-Order Finite Element Fields

[AK91] Akio, Doi and Koide, Akio

 An efficient method of triangulating equi-valued surfaces by using tetrahedral cells, 1991

