

European Research Council Established by the European Commission

Towards automatic block decomposition of 3D domains by exploiting frame fields

Maxence Reberol*, Alexandre Chemin, Jean-François Remacle *Hextreme team (https://hextreme.eu)*

IGA 2019

18th of September 2019, Munich

The problem: from B-Rep to ${\bf block\ decomposition}$

Finding block decomposition is the same as (coarse) hexahedral meshing

Difficult problem (> 30 years) because :

Hard constraints

- 6-faces cube topology
- boundary geometry

Usefulness constraints

• good block qualities

• min nb of irregular edges and vertices (e. valence $\neq 4$, v. valence $\neq 8$)

Holy Grail: an automatic method that satisfies all these constraints

Trivariate parametrization of each block, ready for IGA analysis

Blackinder, om position :

 $Finding\ hexahedrizations\ for\ small\ quadrangulations\ of\ the\ sphere$

K. Verhetsel, J. Pellerin, J.F. Remacle, SIGGRAPH 2019

 \Rightarrow bad block qualities, lot of irregular edges/vertices

Introduction

platebletack decomposition

Not possible to satify all the constraints:

- hex topology
- boundary geometry
- good block qualities
- $\bullet \ good \ regularity \ (small \ nb \ of \ irregular \ edges/vertices)$
- genericity (work on all models)

Two main classes of block decomposition (~hex meshing) approaches :

- Keep genericity but abandon quality and regularity (e.g. topological approaches, octree+snapping techniques)
- Keep regularity and quality but abandon genericity (e.g. sweeping, medial axis, polycube, frame fields)

Fileblehack decomposition

Not possible to satify all the constraints:

- hex topology
- boundary geometry
- good block qualities
- $\bullet \ good \ regularity \ (small \ nb \ of \ irregular \ edges/vertices)$
- genericity (work on all models)

Two main classes of block decomposition (~hex meshing) approaches :

- Keep genericity but abandon quality and regularity (e.g. topological approaches, octree+snapping techniques)
- Keep regularity and quality but abandon genericity (e.g. sweeping, medial axis, polycube, frame fields)

This talk

Why (boundary aligned) frame fields ?

Main ideas:

$frame \ field \Leftrightarrow field \ of \ infinitesimal \ cubes$ frame field singular curves \Leftrightarrow irregular edges of block decomposition

Introduction

Why (boundary aligned) frame fields ?

How to compute a 3D frame field from scratch ?

Still an active research topic:

Huang et al. 2011, Li et al. 2012, Ray et al. 2016, Solomon et al. 2017., Chemin et al. 2018, Palmer et al. 2019, Golovaty et al. 2019, etc

 \dots but not the focus of this talk !

From frame field to block decomposition / block-structured hex mesh

$CubeCover \ parametrization \ (mixed-integer \ problem) + hex \ extraction:$

Nieser et al. 2011 Li et al. 2012 Lyon et al. 2016 and others

 $\label{eq:Dualsurface} Dual \ surface \ construction + primalization:$

Zheng et al. 2018 Livesu et al. 2019

Works for some models, but not generic due to frame field limitations

State of the art

Frame field topology is not always compatible with hex topology

Multiple approaches to frame field correction for CAD models

M. Reberol, A. Chemin, J.F. Remacle, 28th IMR (2019)

Current frame field limitations

3-5 singular curves : a common issue for CAD models

Current frame field limitations

3-5 singular curves can be easily fixed in most CAD cases !

Main idea:

• invalid interior singular curves

boundary valid singular curves

• update frame field boundary conditions to enforce boundary singularities

Results of 3-5 singular curve boundary snapping

Frame field correction

Impact of on block geometry

From frame field to block decomposition / block-structured hex mesh % f(x) = f(x) + f(x) +

CubeCover parametrization (mixed-integer problem) + hex extraction:

Nieser et al. 2011 Li et al. 2012 Lyon et al. 2016 and others

 $Dual\ surface\ construction + primalization:$

Zheng et al. 2018 Livesu et al. 2019

From corrected frame field to block decomposition

To get block-structured hexahedral meshes :

- Frame field with new BCs (changed after snapping)
- CubeCover parameterisation (using CoMISo [Bommes et al. 2011])
- Hexahedra extraction (using HexEx [Lyon et al. 2016])

... but robustness and performance issues due to mixed-integer formulation

Frame field correction

From frame field to block decomposition / block-structured hex mesh % f(x) = f(x) + f(x) +

 $CubeCover \ parametrization \ (mixed-integer \ problem) + hex \ extraction:$

Nieser et al. 2011 Li et al. 2012 Lyon et al. 2016 and others

 $Dual\ surface\ construction + primalization:$

Zheng et al. 2018 Livesu et al. 2019

Work in progress, from frame field to block decomposition

Overview of our future pipeline :

- 1. Compute a frame field
- 2. Frame field correction if required (and possible)
- 3. Build dual sheets4. Build the dual block decomposition
- $5. \ Primalization \ ({\rm mid-point \ subdivision})$
- 6. Structure simplification
- 7. Geometric parametrization of blocks (trivariate polynomials)

3.

4.

6.

 $\mathbf{5}$

Work in progress: dual block decomposition

Idea: work where the frame field is smooth, i.e. far from singularities successive cuts of the model by dual sheets (internal surfaces)

Frame field based block decomposition

From frame field to block decomposition

Work in progress: dual block decomposition

242 dual blocks

Frame field based block decomposition

Conclusion and perspectives

End goal: automatic block decomposition from B-Rep for reasonable models *
* the block decomposition can be found by hand, no pathogical cases

Overview of the pipeline :

- 1. Compute a frame field
- 2. Frame field correction if required (and possible)
- 3. Build dual sheets
- 4. Build the dual block decomposition
- 5. Primalization (mid-point subdivision)
- 6. Structure simplification
- 7. Geometric parametrization of blocks (trivariate polynomials)

Hopefully, integration into gmsh next year

Conclusion

Frame field based approaches have great potential for automatic block decomposition of B-Rep

Conclusion

Frame field based approaches have great potential for automatic block decomposition of B-Rep

Conclusion

Frame field based approaches have great potential for automatic block decomposition of B-Rep

