Robust Topological Construction of All-Hexahedral Boundary Layer Meshes

Maxence Reberol*s, Kilian Verhetsel*, François Henrotte*
David Bommesㄹ, Jean-François Remacle*

* UCLouvain
${ }^{\text {B }}$ University of Bern
s Siemens Digital Industries Software

Context: boundary layer meshing

Boundary layer meshes are often critical to capture the physics (e.g. CFD)

Standard surface-to-volume approach:

- extrusion of surface mesh
- unstructured mesh far from bdr

Quad mesh \rightarrow hex bdr layers

Image from Cadence/Pointwise blog
"Reduce CFD meshing time and improve accuracy with hexahedral boundary layer meshes"

Context: all-hex layer for hex-dominant meshing pipeline

Context: all-hex layer for hex-dominant meshing pipeline

Surface quad mesh extrusion

All-hex layer with better boundary valences

Existing solutions to improve hex boundary layers

Boundary layer cross-imprinting for adjacent surfaces
(Maréchal 2016)

A Constraint-Based System for Hexahedral Mesh Transformation

- Limited number of supported configurations
- Global constraint propagation

How to find good all-hex layers?

The general case is complicated:

- feature curves junctions are not cross-aligned
- hex mesh topology is (very) constrained
- hex mesh topological constraints propagate

New generic approach to build all-hex boundary layer topology

Quad mesh

- Solver to find the best - combination

Consider all possible local boundary hex configurations (one per bdr vertex)

Optimization problem: closest solution to ideal edge hex valences

$\underset{\mathrm{n}, 1 \leq n_{i} \leq 4}{\operatorname{minimize}} \sum_{i=1 . . N_{e}}\left(n_{i}-x_{i}\right)^{2}$	with:
subject to hex mesh topology	n_{i}

i edge id in the input surface mesh

$$
\begin{aligned}
& n_{i} \text { boundary edge hex-valence } \\
& x_{i}=\frac{\alpha_{i}}{\pi / 2} \text { ideal valence (} \mathrm{a}_{\mathrm{i}} \text { surface dihedral angle) }
\end{aligned}
$$

Floating-point ideal valences:
$90^{\circ} \rightarrow x_{i}=1$
$180^{\circ} \rightarrow x_{i}=2$
$270^{\circ} \rightarrow x_{i}=3$
$110^{\circ} \rightarrow x_{i}=1.22$

Example: optimal hex layer solution on pinched surface

Optimization problem reformulation

$\underset{\mathbf{n}, 1 \leq n_{i} \leq 4}{\operatorname{minimize}} \sum_{i=1 . . N_{e}}\left(n_{i}-x_{i}\right)^{2}$	Floating-point ideal valences: $181^{\circ} \rightarrow x_{i}=2.01$ $110^{\circ} \rightarrow x_{i}=1.22$
subject to hex mesh topology	
	Integer unknowns (edge hex-valence)

How to translate "hex mesh topology" into workable constraints ?

Duality between local boundary hex config and disk triangulation

Liu et al. 2018:

(a)

(b)

Fig. 7. (a) Boundary singular vertex intersected with a yellow hemisphere. The green boundary of the hemisphere corresponds to intersection with the hex mesh boundary. (b) Triangulation of the hemisphere, with Vertices correspond to intersections between hex mesh edges and the hemisphere.

All possible boundary hex configurations \leftrightarrow all possible disk triangulations

Problem reformulation in terms of disk triangulations

$\underset{\mathbf{n}, 1 \leq n_{i} \leq 4}{\operatorname{minimize}} \sum_{i=1 . . N_{e}}\left(n_{i}-x_{i}\right)^{2}$
subject to hex mesh topology

with:
n_{i} boundary edge hex-valence
$x_{i}=\frac{\alpha_{i}}{\pi / 2}$ ideal valence (a dihedral angle)

For each boundary vertex j,
∇ there exists a disk triangulation matching the prescribed boundary valences $\boldsymbol{n}^{\mathrm{j}}=\left(\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{m}}\right)$

Integer formulation of the constrained disk triangulation problem

Proposition 1. A triangulation of the disk $\mathcal{D T}(\mathbf{n})$ whose boundary vertex valences match the set $\mathbf{n}=\left(n_{1}, \ldots, n_{m}\right)$ exists if and only if one has, for all reduced problem $\mathbf{n}^{s}=\left(n_{1}^{s}, \ldots, n_{k}^{s}\right)$ recursively obtained by ablation of valence one vertices

$$
\begin{aligned}
\#\left(n_{i}^{s}=2\right) & \neq k-1 \\
k>3, n_{i}^{s}=1 & \Longrightarrow n_{i-1}^{s} \neq 1 \text { and } n_{i+1}^{s} \neq 1 \\
k=3 & \Longrightarrow \#\left(n_{i}^{s}=1\right)=0 \text { or } 3
\end{aligned}
$$

Conditional and counting integer constraints

Recursive vertex ablation:

Concrete example of integer constraints for regular quad vertex (4-valent):

$$
\begin{aligned}
& \#\left(n_{i}=2\right) \neq 3 \\
& n_{1}=1 \Longrightarrow \#\left(n_{i}^{s 2}=2\right) \neq 2 \text { and } \#\left(n_{i}^{s 2}=1\right) \neq 1 \text { and } \#\left(n_{i}^{s 2}=1\right) \neq 2 \\
& n_{2}=1 \Longrightarrow \#\left(n_{i}^{s 3}=2\right) \neq 2 \text { and } \#\left(n_{i}^{s 3}=1\right) \neq 1 \text { and } \#\left(n_{i}^{s 3}=1\right) \neq 2 \\
& n_{3}=1 \Longrightarrow \#\left(n_{i}^{s 4}=2\right) \neq 2 \text { and } \#\left(n_{i}^{s 4}=1\right) \neq 1 \text { and } \#\left(n_{i}^{s 4}=1\right) \neq 2 \\
& n_{4}=1 \Longrightarrow \#\left(n_{i}^{s 5}=2\right) \neq 2 \text { and } \#\left(n_{i}^{s 5}=1\right) \neq 1 \text { and } \#\left(n_{i}^{s 5}=1\right) \neq 2
\end{aligned}
$$

Global all-hex boundary layer integer problem

Compatibility constraints:

- two edge-adjacent local configurations have the same edge hex-valence (n_{i})
- respected by construction (one unknown per edge)

The result all-hex layer matches the midpoint subdivision of the input surface mesh

How to solve efficiently the global integer problem?

- Branch and bound solver with constraint propagation
- Highly non-linear constraints (counting and conditional)
- We use the Gecode library (Schulte et al. 2006), MIT license
- The problem has a guaranteed solution: $\mathbf{n}=2$ (i.e. surface extrusion)
- Problem decomposition to make the problem solvable in practice

Global: 106k integer unknowns
$\rightarrow 18$ sub-problems with between 35 and 105 integer unknowns

Fast: - <1 sec per sub-problem in practice - solved in parallel

Results

- Topological problem is 100\% robust
- Generic, no hardcoded case
- ABC dataset \rightarrow always better than extrusion
- Find non-intuitive configs
- Difficult configs are solved in local neighbourhoods \rightarrow No global pollution

Example of localized solving for pyramid apex

Example of local solutions found by the optimization solver

Quality will be impacted by initial surface quad mesh

Ridge/corner vertex topology
valence 2

valence 3

Geometry of the all-hex layer

- Geometry: untangling/smoothing based on (Garanzha et al. 2021)
- Sometimes there is no good solution (same for surface extrusion)

CAD acute (<1deg) + bad quad mesh
\rightarrow tangled hexa

Geometrical issues

- Common issue: self-intersections of the interior quad mesh

thin region + layer too thick \rightarrow overlap

- On dataset: 83/419 models with self-intersections (using default parameters)

Going back to hex-dominant meshing pipeline

Remaining volume: interior quad boundary

Robust topological interior tet meshing

Interior quad mesh without self-intersections:
\rightarrow constrained tet mesher

With self-intersections:
\rightarrow topological hex-tet transitions to go back to the initial surface geometry

Hex-dominant interior mesh

- Frame-field guided frontal point insertion (Georgiadis et al. 2021)
- Combination of tetra into hexa (Pellerin et al. 2018)

Hex-dominant meshing results on Mambo

- MAMBO* dataset: 111/114 hexdom meshes with valid quality

Conclusions and future work

More information

- Preprint at https://mxncr.github.io/
- Open-source code at https://gitlab.onelab.info/gmsh/gmsh/-/tree/hexbl

Key idea

- Exhaustive local hex configurations can be explored thanks to duality with disk/sphere triangulations
- Disk triangulation problems (existence here) can be reformulated into integer problems !

Future work

- Multiple hex layers
- Isotropric subdivision or iterative all-hex layer
- Anisotropric subdivision with non-hex at irregular configs
- Control over layer thickness
- For hex-dominant: fix the tet mesh quality (if invalid due to topological transition)

Robust Topological Construction of All-Hex Boundary Layer Meshes

Thank you for you attention Questions?

Job ads:

- Siemens Star-CCM+ meshing team have two open positions
- More information on Discord, don't hesitate to contact me

Appendix

Can we avoid midpoint subdivision ? Short answer: no

(a) and (c): without midpoint subdivision
(b) and (d): with midpoint subdivision

Performance on sub-problems

